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Abstract.  

In work with the help of the finite element method (FEM), a numerical solution of stresses and 

displacements in the form of graphs taking into account different boundary conditions and geometric 

parameters was obtained. The conducted study showed a significant effect of the accounted effects and 

boundary conditions on the values of dynamic characteristics and the static stability of pipelines. 
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Introduction 

Trunk pipelines and pipelines of enterprises in the energy, petrochemical and other industries constitute a 

fairly large part of their tangible assets. As a rule, pipelines are very highly loaded structures, because even 

in their design, in order to save metal, the lowest safety factors are actually laid. This requires a very precise 

justification of the strength and resource for all possible types of loading. Carrying out such an analysis is 

impossible without the use of modern computer systems. At the same time, the calculator needs to 

understand the nature of the solution beforehand, and the numerical results should only clarify some of the 

coefficients. It is important to know the features of the deformation of the structure with its geometrically 

nonlinear behavior, considering that even for ideally elastic material a slight increase in the load can lead to 

uncontrolled growth of strains and stresses [1,2,3,4]. Without understanding the specific features of the 

deformation of various elements achieved through analytical modeling, it is impossible to use the 

provisions of these standards. To solve the above problem, the finite element method was used [5,6] and 

computer simulation.  

Problem formulation methods of solution.  The mathematical model of the system is based on the 

dynamic three-dimensional equations of the linear theory of viscoelasticity according to the rheological 

Kelvin-Voigt model [6]: 
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where  ,   – tensors of stresses and deformations; e  – strain tensor deviator Ee
3

  ; E – unit tensor; 

),( truu  , ),( tVV rff   – the vectors of displacements and given volume forces, which depend on time 

t and the radius of the point vector of the continuous medium r;  ,  ,   – Lame coefficients and material 

viscosity;   – density;   – volumetric deformation;   – differential operator of Hamilton. The above 

differential formulation of the problem of the theory of viscoelasticity is equivalent to a variational 

formulation in the form of the principle of possible displacements: 
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where u  – vector of possible displacements of points in a continuous medium; The integrals on the left 

represent the work of external volume and surface forces,  
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Fig.1. Calculation scheme 

 

as well as inertia forces      
2

2

t
inert






u
f 

 
 on possible displacements;   – virtual work of the internal 

forces in the deformation of the body:  

V

dV . For the numerical solution of this 

equation, the standard procedure of finite-element discretization with respect to spatial variables using the 

node isoparametric element was applied [7]. Taking into account the form of the defining relation recorded 

in the matrix form using matrices of elastic and viscous modules  D and S: 

 eSD   ,  

The following matrix time differential equation is obtained: 
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where )(tUU  , )(tFF   – global vectors of nodal displacements and nodal forces as functions of time (or 

temperature loads), K, M, R are global stiffness, mass, and dissipation matrices. The FEM procedures 

provide for a transition from differential dependencies, for individual finite elements to a global system of 

equations for the entire array. 

Further transformation is based on the standard approach used in the linear theory of elastic 

oscillations [7]. Suppose that the external load varies in time according to the harmonic law, which can be 

written in the form: 

 tiet 
FF )( , RF ,  

where F,   – amplitude and circular frequency of the force, i is the imaginary unit. 

Then a particular solution, corresponding to the steady-state forced oscillations of the system, is sought in an 

analogous form: 

 tiet 
UU )( , 21 UUU i ,  

where U is the global vector of complex amplitudes of nodal displacements; 1U  and 2U  – Respectively, the 

real and imaginary parts. Substituting expressions of force and displacement in the differential equation, we 
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obtain a system of complex algebraic equations with respect to the vector of complex amplitudes of nodal 

displacements: 

 FUKRM
2  )(  i .  

After solving the last system, the amplitude values of the node accelerations are calculated according to the 

following formula: 

 2

2

2

1

2 UU  w . 

To begin with, the equation of dynamics for curvilinear rods is derived. A feature of the design work 

under dynamic action is the need to take into account the inertia forces associated with the relative 

displacement of the point of the deformed body. The presented algorithm is implemented in the software 

complex MAPLE and allows to calculate viscoelastic steady-state oscillations of mechanical structures 

under the influence of external harmonic force. It is known that if the stress concentration is not considered, 

then a small number of finite elements is sufficient to describe elastic vibrations. Taking into account that in 

the model high-order elements with quadratic approximation of displacements are used, only 156 finite 

elements were used. 

 The material is characterized by a modulus of elasticity 51006,2 E  MPa, the shear modulus 
4100,8 G  MPa and density 7000  kg/m

3
. One of the sources of elastic oscillations of pipes and 

pipelines is the pulsation of the pressure of the working medium. Under the influence of pulsations, the tube 

performs ordinary forced oscillations associated with the expansion-contraction of the wall. Under certain 

conditions, stationary oscillation regimes become dynamically unstable, parametric resonance develops in 

the system. The results of studies of the stability of the axisymmetric modes of oscillations of straight pipes, 

such as thin-walled cylindrical shells, are presented in numerous papers, for example, [10]. A distinctive 

feature of the parametric oscillations of curvilinear pipes is the presence along with simple resonances of 

combination resonances of the total type [10]. Consider the pipe (Fig. 1), the axial line of which represents 

an arc of a circle of radius R , long L , with a central angle (bending angle) 
0 . The pipe has an ideally 

circular cross-section of radius r , moreover / 1/ 5r R  . Wall thickness h . The pipe is under the influence of 

monoharmonic pressure ( ) (1 cos )mp t p t   , where 
mp  – Mean (working) pressure, 

0 / mp p   – Ripple 

parameter; 
0p  and   – respectively, amplitude and circular frequency. The perturbed form corresponding to the 

deviation of the motion from the unperturbed one is approximated by functions of the form: 
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Here v  and w  – moving points of the middle surface in the circumferential and radial directions, s  and   – 

axial and circumferential coordinates, t  – time,  mn mnw w t  – generalized coordinates corresponding to the 

rod ( m  = 1, 2 and n  = 1) and shell ( m  = 1, 2 and n  = 2, 3, 4, …) forms. Index m  = 1 corresponds to 

oscillations in the plane of the tube, the index m  = 2 – the oscillations along the normal to the plane. The 

rod (beam) shape reflects the movements associated with the movements of the cross-section of the pipe as a 

rigid whole, the shell forms are movements associated with the deformation of the shell wall. The 

n  = 2, 3, 4, ..,   waves in the circumferential direction and one half-wave in the axial direction. 

On the basis of the approximation (1), the semi-instantaneous theory of anisotropic layered shells and the 

Lagrange equations of the second kind, two independent systems of coupled differential equations with 

variable stiffness coefficients 
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           2 ( 2 cos ) 0A w B w C F t w       , (2) 

Which describe the parametric oscillations of the tube, both in the plane of its curvature, and along the 

normal to the plane. In this case, 3

26 /( )ТD m r   – factor, 2Tm hr  – weight of pipe length unit, 

  3

2 2 12 21/ 12 1D E h     – bending rigidity of the wall in the circumferential direction, 
2E , 

12 , 
21  – 

effective elastic constants [11], 00.5 / крp p   – coefficient of parametric excitation, 
3

23 /крp D r  – critical 

external pressure corresponding to the static loss of stability, - damping factor, 2 1nnf n  . Matrix elements 

 A ,  B ,  C  are determined by the recurrence formulas [12]. 

The resolving system of equations (2) describes the parametric oscillations of the bound shell-rod system. 

The source of parametric excitation is a periodic change in the volume of the internal cavity. At the same 

time, the pressure "works" not on the basic (axisymmetric) displacements, but on additional displacements 

associated with bending deformations of the wall. 

 

 
                              Fig. 2. Graph of changes in eigenvectors. 
 

From the analysis of the structure of the matrix  C  it follows that the rod form ( n  = 1) is associated 

with the shell form ( n  = 2). This means that the vibrations of the tube as a rod are accompanied by 

oscillations of the shell wall, associated with flattening of the cross section (the Karman effect is 

manifested). The interaction of the core and shell forms is due to elastic bonds, the intensity of which is 

characterized by off-diagonal elements of the matrix  C  and depends on the length of the pipe L  and the 

curvature parameter /r R . The shorter the tube and the larger the parameter /r R , the stronger these links 

are. In addition, the shell forms interact with each other: separately n  – even harmonics ( n  = 2, 4, 6, …) 

and n  – Odd harmonics ( n  = 3, 5, 7, …).  

Figure 2 shows the 1st and 2nd forms of oscillations of a rectilinear fixed rod ( 0F ).  It can be seen that 

the results of the calculations are consistent with the data [9]. 

Example 1. The section of the pipeline AB with some initial curvature is fixed at the ends A and B and is 

under its own weight. Determine the stress-strain state at various pressures and temperatures. The pipeline is 

under the influence of its own weight q, including the weight of the product, as well as the internal pressure 

P. The temperature regime is determined by the initial temperature  Т0 , at which the pipeline was fixed in 

this state, and the operating temperature  ТЭ .  
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Figure 3. Distribution of displacements of v, w and longitudinal stresses along the upper and lower 

generatrix of the pipeline section with constant initial curvature  ( m300 ) under the influence of 

its own weight. 

Analyzing these results, it can be seen that, in contrast to straight beams in the presence of curvature, the 

bending moment can change sign (bending direction) depending on the ratio of temperature and pressure. 

The curves reduce the stresses due to the appearance of freedom of longitudinal displacements. In this 

phenomenon, in particular, the work of compensators is based. 

The smaller the radius of curvature R  and more number n , the stronger the interaction. In the conditions of 

the nominal operating mode, we regard an ideal pipe as a parametrically excited system with a small 

parameter depth  . Analysis of the stability of elastic vibrations is limited to the region of lower 

eigenfrequencies. To calculate the boundaries of instability regions for the main simple resonances 2 i  

and the main combination resonances i j     ( i , j  = 1, 2, .., 5) we use the small parameter method [4]. 

The perturbed form of motion is represented as a superposition of proper forms. To solve the eigenvalue 

problem, we use the Jacobi method. The report presents the results of a study of the dependence of the 

spectra of the lowest eigenmodes and frequencies on the working pressure, as well as geometric, structural 

and technological factors. The obtained results are compared with the data of the FEM calculations. 

The pictures of resonance bands are shown depending on the angle  
0  = 5º, 90º, 135º, 180º (at L  = const) 

and reinforcement angles   = ±55º, ±65º, ±75º. It is established that when the curvature of the tube 

decreases, the lowest natural frequency 
1  increases, and higher frequencies 

2 , 
3 , 

4 , 
5  on the 

contrary, decrease and approach the natural frequencies of the straight tube. In this case, the regions of 

dynamic instability shift towards smaller values  1/ 2 , the relative width of the bands narrows. At 

0  = 5º Region of instability 
12  and 

1 2   practically disappear. 

With increasing reinforcement angles ±  The regions of dynamic instability corresponding to the main 

simple and principal Raman resonances are shifted toward higher values  1/ 2 . In this case, the regions 

of instability 
12  and 

1 2   narrowed, and the regions of instability 
22 , 

32 , 
42 , 

52  and 
2 4  , 

3 5  , on the contrary, expand. 

Таблица 1 
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The values of the critical bending moment Мcr for a tube with initial curvature of the axis 

λ0 М c r  

The results obtained Literary source 

[7] [8] 

0 0,322 - 0,321 

0,1 0,282 0,281 0,285 

0,2 0,247 0,254 0,254 

0,3 0,167 0,191 0,190 

In Table. 1 represents the values of the critical bending moment calculated on the basis of the refined 

solution М c r  for pipes with initial curvature of the axis R0. As might be expected, with an increase in the 

initial curvature, the values of the critical moment decrease. Let us construct the dependence of the critical 

bending moment on the pressure in the normalized coordinates m and q (Fig. 2). The graph represents the 

limiting curve 1, characterizing the combination of loading, leading to a loss of stability. For points that lie 

in the plane bounded by this curve, the loading level by moment and pressure does not correspond to the 

loss of stability. The points above the curve correspond to a combination of loads in which the loss of 

stability of the pipe is unavoidable. 

 

Fig. 3. Limit curves with the joint action of bending moment and pressure for a straight pipe: 1 - our 

results; 2 - the data [9]; 3 - data [8]. 

In the region q <0 (internal pressure), all the graphs practically coincide, so in Fig. 3 they are given for the 

region q> 0. 

Figure 4.5 shows the results of calculations of the region of dynamic instability of the pipeline for a metal 

pipe 1420x10 mm, for a pulsating flow of liquid. The method for estimating the dynamic stability of a 

pipeline reduces to finding the position of the point (, q0). If this point falls on a plane free from the shaded 

areas of instability, then the stability of this pipeline is ensured. The smallest frequency of proper bending 

oscillations min mn  , for all the types of anchoring of the ends of pipeline sections at 2m  and 1n , is 

shown in Figure 6. those. min 21 mn .  
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Fig. 4 and 5. The regions of dynamic instability of the deep-water gas pipeline for a metal pipe 

of 1420x10 mm and a protective reinforced concrete layer h1=30 mm. 

 
Fig.6 Dependence 21  from the corner   at a relative thickness 70/1/ rh  With different types of 

fixation of the end sections. 

                                                           Conclusions  

1. The smallest frequency of proper bending oscillations min mn  It is realized for all considered types of 

fastening of the ends of sections of pipelines on the second shell form of oscillations at 2m  and 1n , 

i.е. min 21 mn .  

2.  With an increase in the pipe curvature parameter   frequencies of proper flexural vibrations of pipeline 

sections mn  at 3,2,1m  and 1n  Essentially increase under any conditions of fastening of the ends. 

3. The pressure prevents the deformation of the cross sections of the pipelines and thereby increases their 

rigidity, which leads to an increase in the frequencies at any fixation of the end sections of the sections. 

Most Frequency 21  increase in thinner and flat tubes  70/1/ rh  and 6 . With the growth of 

internal pressure 0p  from 0 to 2 MPa, the frequencies are almost doubled. 
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